Calculating Mode Shift and Congestion Relief-Related Greenhouse Gas Displacement For the Current Year (see last slide for contact information)

Step 1: Estimate Reductions in Annual Auto Vehicles Miles Traveled and Reductions in Annual Auto Fuel Use due to Transit Mode Shift

- Data needed for this step: 1) Passenger miles for the current year, available at the Florida Transit Information System (FTIS), 2) mode shift factor by transit area population size.
- 1. In the "Expansion Scenarios" Worksheet Tab, insert passenger miles for the current year for the appropriate mode of transit (if you would like to fill in the other data you may, however it is not necessary to do the calculations).
- 2. VMT Equivalent will be calculated automatically when passenger miles is input.

				Service	Supplied			Ser	vice Consun	ned	Ĩ
		Vehicles in Operation	Vehicles in	Total	Vehicle		Vehicle	Unlinked Pass.			
	year of	Max	Operation	Vehicle	Revenue	Vehicle	Revenue	Trips	Passenger	VMT	
	data	Service	Units	Miles	Miles	Hours	Hours	(Ridership)	Miles	Equivalent	L I
Current Year											
Bus, Fixed Route	2006	8	coaches	437,493	420,927	25,351	24,096	309,232	1,861,667	1,537,737	
Commuter Rail	2006										Î.
Automated Guideway	2006										П
Light Rail	2006										П
Heavy Rail	2006										
											a 4

Calculating Mode Shift and Congestion Relief GHG Displacement for the Current Year

Step 1: Estimate Reductions in Annual Auto Vehicles Miles Traveled and Reductions in Annual Auto Fuel Use due to Transit Mode Shift (continued)

3. Insert Mode Shift Factor by transit area population size from the table below.

Agency Size	Service Area Population	Mode Shift Factor
Small	Less than 500,000	0.34
Medium	Between 500,000 and 1,250,000	0.42
Large	Greater than 1,250,000	0.47

4. Annual Auto VMT Reduction will be calculated automatically. (If you would like to fill in the other data you may, however it is not necessary to do the calculations).

er	vice Consur	ned	E	lectricity Us	e		Fuel	Use		Mode	Shift Emis	sions Reduc	ctions
d			KWH of	Electricity			Diasal		CNG	Mode	Annual	Annual Auto fuel	Avoided MTC02e Emissions
s.	Passenger	∨мт	Propulsion	Emissions		Diesel	Emissions	CNG	Emissions	Shift	Auto VMT	reduction	to Mode
)	Miles	Equivalent	Power	of MTCO2		(gal)	MTC02	(therms)	MTCO2	Factor	Reduction	(gal gas)	Shift
2	1,861,667	1,537,737				59,458	603			0.34	522,831	25,755	228

Step 2: Calculate and sum the GHG mobile emissions reductions due to transit mode shift

Data needed for this step: 1) light duty fuel economy for the current year.

- 1. The calculator will automatically calculate the "Annual Auto fuel reduction of gallons of gasoline" due to transit mode shift for the year 2006.
 - a) Other years of Fuel Economy for Light Duty Stock are located in the Fuel Economy Worksheet tab.
- 2. The calculator will automatically calculate the Avoided Metric Tons of Carbon dioxide equivalent (MTCO₂e) emissions due to mode shift.
 - a) It calculates Carbon dioxide, methane and Nitrous oxide content of the Annual Auto fuel reduction of gallons of gasoline.
 - b) These three greenhouse gases are aggregated into the metric tons Carbon dioxide equivalent.

	Mode	e Shift Emis	sions Reduc	tions
			Annual	Avoided MTCO2e
1	Mode	Annual	Auto fuel	Emissions
	Shift Eactor	Auto VMT Reduction	reduction	to Mode Shift
-	ractor	Reduction	(yai yas)	51111
	0.34	522,831	25,755	228

Fuel Economy Worksheet tab: Light Duty Stock - Table A7 mpg 2005 10 Q 2006 20.3 2010 20.3 2015 21.5 23.7 2020 2010 20.3 20.5 2011 2012 20.8 2013 21.0 2014 21.3 2015 21.5 21.9 2016 2017 22.4 2018 22.8 2019 23.3 2020 23.7

Step 3: Estimate the fuel wasted in congestion

Data needed for this step: 1) the Unlinked Passenger Trips (Ridership)

1. In the Expansion worksheet tab, input the Unlinked Passenger Trips (Ridership).

				Carriera	Same Kard			C			┢
				Services	supplied			Ser	vice Consun	nea	┡
		Vehicles in Operation	Vehicles in	Total	Vehicle		Vehicle	Unlinked Pass.			
	year of	Max	Operation -	Vehicle	Revenue	Vehicle	Revenue	Trips	Passenger	VMT	Ľ
	data	Service	Units	Miles	Miles	Hours	Hours	(Ridership)	Miles	Equivalent	
Current Year											Г
Bus, Fixed Route	2006	8	coaches	437,493	420,927	25,351	24,096	309,232	1,861,667	1,537,737	Г
Commuter Rail	2006										Г
Automated Guideway	2006										Γ
Light Rail	2006										Г
Heavy Rail	2006										Г
2017 Scenarios											Γ

Steps 4 and 5: Adjust the gallons of fuel wasted to fuel saved due to transit mode shift and Convert the adjusted gallons of fuel saved to CO2e

- 1. The TTI Urban Mobility Report Trip Adjusted Average Wasted Fuel will automatically be calculated.
- 2. The Trip Adjusted Gallons of Fuel Saved will automatically be calculated.
- 3. The Avoided Metric Tons of Carbon dioxide equivalent, including Carbon dioxide, methane and Nitrous oxide, is automatically calculated.

	Mode	e Shift Emis	sions Redu	ctions	Congest	missions	TOTAL	
2 2 2	Mode Shift Factor	Annual Auto VMT Reduction	Annual Auto fuel reduction (gal gas)	Avoideo MTCO2e Emissions to Mode Shif	Trip Adjusted Average Wasted Fuel from TTI Urban Mobility Report	Trip Adjusted Gallons Fuel Saved	Avoided MTCO2e Emissions from Congestion Relief	Avoided MTCO2e Emissions to Mode Shift and Congestion Relief
Ι	0.34	522,831	25,755	228	3,533	1,502	13	241
4								
4								

Step 6: Total the Metric Tons of Carbon Dioxide Equivalent Avoided due to Transit Mode Shift and Congestion Relief for the Current Year

1. The calculator will automatically add the Avoided Metric Tons of Carbon dioxide equivalent emissions from mode shift and congestion relief

]	Mode	e Shift Emis	sions Redu	ctions	Congest	tion Relief E	missions	TOTAL
2 4 5	Mode Shift Factor	Annual Auto VMT Reduction	Annual Auto fuel reduction (gal gas)	Avoided MTCO2e Emissions to Mode Shift	Trip Adjusted Average Wasted Fuel from TTI Urban Mobility Report	Trip Adjusted Gallons Fuel Saved	Avoided MTCO2e Emissions from Congestion Relief	Avoided MTCO2e Emissions to Mode Shift and Congestion Relief
1	0.34	522,831	25,755	228	3,533	1,502	13	241
]								

Calculating the 2017 Expansion Scenarios

Step 1: Quantify Data for each Transit Mode

- Data needed for this step: 1) Passenger miles for base year, 2) passenger miles for benchmark year, 3) vehicle miles for base year, 4) vehicle miles for benchmark year, 5) fuel consumption for base year, 6) fuel consumption for benchmark year
- 1. In the "Expansion Scenarios" Worksheet Tab, insert your passenger miles, vehicle miles, and fuel consumption for the base year for the appropriate mode of transit (If you would like to fill in the other data you may, however it is not necessary to do the calculations).

				Service	Supplied			Se	vice Consur	ned	Fuel Use		
	year of data	Vehicles in Operation Max Service	Vehicles ir Operation Units	Total · Vehicle Miles	Vehicle Revenue Miles	Vehicle Hours	Vehicle Revenue Hours	Unlinked Pass. Trips (Ridership)	Passenge Miles	VMT Equivalent	Diesel (gal)	Gasoline (gal)	CNG (therms)
Current Year													
Bus, Fixed Route	2006	109	coaches	2,831,654	2,679,969	246,602	236,312	8,562,284	28,683,651	23,692,696	853,003		
Commuter Rail	2006												
2017 Scenarios													
Due, Fixed Deute													

Step 1: Quantify Data for each Transit Mode (cont.)

2. Estimate passenger miles for benchmark year:

-Insert the base year annual passenger miles into the "2017 Projections" Worksheet Tab (this can be placed into each scenario as the beginning number will be the same for each of the three scenarios)

-Make an assumption about the rate of increase for passenger miles per year for each scenario

-Carry the assumption through to the benchmark vear

Insert the estimated passenger miles for the benchmark year into the "Expansion Scenarios" Worksheet Tab under passenger miles for the 2017 Scenarios.

<u> </u>	+				Condeed	Sumplied			5	ico Conoun	and
	⊢				Service :	supplied			Se	vice consur	iea
	уe	ear of data	Vehicles in Operation Max Service	Vehicles in Operation - Units	Total Vehicle Miles	Vehicle Revenue Miles	Vehicle Hours	Vehicle Revenue Hours	Unlinked Pass. Trips (Ridership)	Passenger Miles	VMT Equivalent
Current Year											
Bus, Fixed Route		2006	109	coaches	2,831,654	2,679,969	246,602	236,312	8,562,284	28,683,651	23,692,696
Commuter Rail		2006									
2017 Scenarios											
Bus, Fixed Route											
Trend Scenario					5,273,143					48,091,061	39,723,217
Evenly Distributed Scenario	Г				4,319,141					78,781,130	65,073,213
Metro Areas Scenario	Г				5,273,143					48,091,061	39,723,217
Commuter Rail	Γ										
Trend Scenario	Г										
Evenly Distributed Scenario	Г										
Metro Areas Scenario	\Box										

_
rear

Step 1: Quantify Data for each Transit Mode (cont.)

4. Estimate the vehicle miles for benchmark year:

-Insert the base year vehicle miles into the "2017 Projections" Worksheet Tab (this can be placed into each scenario as the beginning number will be the same for each of the three scenarios)

-Find the load factor by dividing the base year passenger miles by the base year vehicle miles -Make assumption about the rate of increase of the load factor per year for each of the three scenarios

-Carry the assumption through to the benchmark year

-Divide the estimated passenger miles for each year by the estimated load factor for each year to get the vehicle miles for each year

- 5. Insert the estimated vehicle miles for the benchmark year into the "Expansion Scenarios" Worksheet Tab under vehicle miles for the 2017 Scenarios.
- 6. Once you have done this, the fuel consumption for the benchmark year is automatically calculated using your inputs for the vehicle miles for the benchmark year

Scenario 1				
Year	Passenger Miles	Load Factor	Vehicle Miles	
2006	28,683,651	9.1	3,145,137	D Base Year
2007	30,063,335	9.12	3,296,418	
2008	31,509,381	9.12	3,454,976	
2009	33,024,982	9.12	3,621,160	
2010	34,613,484	9.12	3,795,338	
2011	36,278,392	9.12	3,977,894	
2012	38,023,383	9.12	4,169,231	
2013	39,852,308	9.12	4,369,771	
2014	41,769,204	9.12	4,579,957	
2015	43,778,303	9.12	4,800,252	
2016	45,884,039	9.12	5,031,145	Rasolino Voa
2017	48,091,061	9.12	5,273,143	

	Γ				Service	Supplied		
	у	ear of data	Vehicles in Operation Max Service	Vehicles in Operation Units	Total Vehicle Miles	Vehicle Revenue Miles	Vehicle Hours	Vehicle Revenue Hours
Current Year								
Bus, Fixed Route		2006	109	coaches	2,831,654	2,679,969	246,602	236,312
Commuter Rail		2006		_				
2017 Scenarios								
Bus, Fixed Route	Γ							
Trend Scenario	Г				5,273,143			
Evenly Distributed Scenario	Γ				4,319,141			
Metro Areas Scenario	Г				5,273,143			
Commuter Rail	Γ							
Trend Scenario	Γ							
Evenly Distributed Scenario	Γ							
Metro Areas Scenario	Γ							

Step 2: Calculate Annual Auto VMT Reductions

1. Calculate the VMT-Equivalent of passenger miles

-In the "Expansion Scenarios" Worksheet Tab, the calculator will automatically calculate the VMT-equivalent of passenger miles (how many miles would have been driven by automobile had transit not been an option) from passenger miles for both the base year and the benchmark year for each of the three scenarios.

2. Determine the mode shift factor for the base year

Agency Size	Service Area Population	Mode Shift Factor		
Small	Less than 500,000	0.34		
Medium	Between 500,000 and 1,250,000	0.42		
Large	Greater than 1,250,000	0.47		

-Determine the mode shift factor from the following table provided by APTA

- In the "Expansion Scenarios" Worksheet Tab, insert the mode shift factor for the base year

				- · ·				-						
			Service Supplied						Service Consumed			Fuel Use		
		Vehicles in	Vehicles					Unlinked						
		Operation	in	Total	Vehicle		Vehicle	Pass.						Mode
	year of	Max	Operation -	Vehicle	Revenue	Vehicle	Revenue	Trips	Passenger	VMT	Diesel	Gasoline	CNG	Shift
	data	Service	Units	Miles	Miles	Hours	Hours	(Ridership)	Miles	Equivalent	(gal)	(gal)	(therms)	Factor
Current Year														
Bus, Fixed Route	2006	109	coaches	2,831,654	2,679,969	246,602	236,312	8,562,284	28,683,651	23,692,696	853,003			0.34
Commuter Rail	2006													

Step 2: Calculate Annual Auto VMT Reductions (cont.)

3. Determine the mode shift factor for the scenarios

-Make assumptions about how much of the increase in passenger miles (from the base year to the benchmark year) is from choice riders for each scenario. For example:

- -If it is assumed that the percentage of choice riders remains the same in the benchmark year as it was in the base year, the mode shift factor does not change
- -If it is assumed that the increase in passenger miles is from choice riders only from the base to the benchmark year, then a new mode shift factor should be calculated for the evenly distributed and metro areas scenarios. To do this, first, calculate the number of miles by dependent riders by multiplying the passenger miles (from Step 1) for the trend scenario benchmark year by the mode shift factor for the base year. Holding the number of transit dependent riders Second, subtract the dependent rider miles from the total passenger miles for the trend scenario to get the miles by choice riders. Third, divide the total passenger miles for the scenario by the miles by choice riders for the mode shift factor for the mode shift factor for that scenario.
- In the "Expansion Scenarios" tab, insert the mode shift factor for each of the scenarios

				Service Supplied				Sei	vice Consun	ned		Fuel Use		Mode	
			Vehicles in	Vehicles					Unlinked						
		voar of	Operation Max	in Operation	Total Vehicle	Vehicle	Vahicla	Vehicle	Pass. Trine	Decondor	VMT	Diacal	Gagolino	CNG	Mode
		data	Service	Units	Miles	Miles	Hours	Hours	(Ridership)	Miles	Equivalent	(gal)	(gal)	(therms)	Factor
Cu	rrent Year														
Bu	s, Fixed Route	2006	109	coaches	2,831,654	2,679,969	246,602	236,312	8,562,284	28,683,651	23,692,696	853,003			0.34
Co	mmuter Rail	2006													
201	17 Scenarios														
Bu	s, Fixed Route														
	Trend Scenario				5,273,143					48,091,061	39,723,217	1,588,473			0.34
	Evenly Distributed Scenario				4,319,141					78,781,130	65,073,213	1,301,091			0.60
	Metro Areas Scenario				5,273,143					48,091,061	39,723,217	1,588,473			0.34

4. Calculate the annual auto VMT reductions

-In the "Expansion Scenarios" Worksheet Tab, the calculator will automatically calculate the appual auto VMT reductions (VMT equivalent * mode shift factor).

Step 3: Calculate Energy Savings from Annual Auto VMT Reductions

1. In the "Expansion Scenarios" Worksheet Tab, the calculator will automatically calculate the energy savings from annual auto VMT reductions by dividing the difference in annual auto VMT reductions from 2006 to 2017 by the average fuel economy in miles per gallon for the fleet of cars on the road in 2017.

			Service Supplied						rvice Consur	ned		Fuel Use		Mode Shift Emissions Reduc		
	year of	Vehicles in Operation Max	Vehicles in Operation -	Total Vehicle	Vehicle Revenue	Vehicle	Vehicle Revenue	Unlinked Pass. Trips	Passenger	VMT	Diesel	Gasoline	CNG	Mode Shift	Annual Auto VMT	Annual Auto fuel reduction
CurrentVeer	data	Service	Units	Miles	Miles	Hours	Hours	(Ridership)	Miles	Equivalent	(gal)	(gal)	(therms)	Factor	Reduction	(gal gas)
Current rear	2000	400		2.024.654	2 670 060	246,602	008.040	0.560.004	00 000 054	22 602 606	050.000			0.24	0.055.547	206.022
Bus, Fixed Route	2006	109	coacnes	2,831,054	2,679,969	246,602	230,312	8,562,284	28,083,051	23,692,696	853,003			0.34	8,055,517	390,823
Commuter Rall	2006															
2017 Scenarios			1						T							
Bus, Fixed Route				5 979 4 49					40.004.004	00 700 047	4 500 470			0.04	40.505.004	000.404
i rend Scenario				5,273,143					48,091,061	39,723,217	1,588,473			0.34	13,505,894	603,481
Evenly Distributed Scenario				4,319,141					78,781,130	65,073,213	1,301,091			0.60	39,043,928	1,744,590
Metro Areas Scenario				5,273,143					48,091,061	39,723,217	1,588,473			0.34	13,505,894	603,481
Commuter Rail																
Trend Scenario																
Evenly Distributed Scenario																
Metro Areas Scenario																
Increase to 2017																
Bus, Fixed Route																
Trend Scenario				2,441,489					19,407,410	16,030,521	735,470			0.34	5,450,377	243,538
Evenly Distributed Scenario				1,487,487					50,097,479	41,380,517	448,088			0.60	30,988,411	1,384,648
Metro Areas Scenario				2,441,489					19,407,410	16,030,521	735,470			0.34	5,450,377	243,538
Commuter Rail																
Trend Scenario																
Evenly Distributed Scenario																
Metro Areas Scenario																

Step 4: Calculate GHG Emissions from Energy Savings and Annual Auto VMT Reductions

1. In the "Bus" or "Commuter Rail" tab, the calculator will automatically calculate the GHG emissions of autos for CO_2 , N_2O , and CH_4 for each scenario.

Emissions		
GHG Emission Reduct	ions	
	Fuel Reduction	243,538
	VMT Reduction	5,450,377
Scenario 1	CO2 Emissions (MMt)	0.002
Ocenano i	N2O Emissions (MMt)	2.78E-08
	CH4 Emissions (MMt)	9.16E-08
	GHG EMISSIONS (MMtCO2e)	0.002
	Fuel Reduction	1,384,648
	VMT Reduction	30,988,411
Scenario 2	CO2 Emissions (MMt)	0.012
Occinano 2	N2O Emissions (MMt)	1.58E-07
	CH4 Emissions (MMt)	5.21E-07
	GHG Emissions (MMtCO2e)	0.012
	Fuel Reduction	243,538
	VMT Reduction	5,450,377
Scenario 3	CO2 Emissions (MMt)	0.002
	N2O Emissions (MMt)	2.78E-08
	CH4 Emissions (MMt)	9.16E-08
	GHG Emissions (MMtCO2e)	0.002

Step 5: Convert GHG Emissions for Auto Trip Reductions to CO₂e

1. In the "Bus" or "Commuter Rail" tab, the calculator will automatically convert the GHG emissions (CO₂, N₂O, and CH₄) for auto trip reductions to CO₂ equivalents for each scenario.

Emise	sions		
GHG E	mission Reduct	tions	
		Fuel Reduction	243,538
		VMT Reduction	5,450,377
	Sconario 1	CO2 Emissions (MMt)	0.002
	ocenano i	N2O Emissions (MMt)	2.78E-08
		CH4 Emissions (MMt)	916E-08
		GHG Emissions (MMtCO2e)	0.002
		Fuel Reduction	1,384,648
		VMT Reduction	30,988,411
	Scenario 2	CO2 Emissions (MMt)	0.012
	occilano 2	N2O Emissions (MMt)	1.58E-07
		CH4 Emissions (MMf)	5 21 E-07
		GHG Emissions (MMtCO2e)	0.012
		Fuel Reduction	243,538
		VMT Reduction	5,450,377
	Scenario 3	CO2 Emissions (MMt)	0.002
	500114110 0	N2O Emissions (MMt)	2.78E-08
		CH4 Emissions (MMf)	916E-08
		GHG Emissions (MMtCO2e)	0.002

Step 6: Calculate GHG Emissions from Change in Transit Use for each Mode

1. In the "Bus" or "Commuter Rail" Worksheet Tab, the calculator will automatically calculate the GHG emissions of Transit for CO_2 , N_2O , and CH_4 for each scenario.

	Emis	sions from Trans	sit Vehicles				
ĺ						Fuel Type	
					Diesel	Gasoline	CNG
				All Fuels	(gal)	(gal)	(therms)
			Fuel Change		735,470		
		Scenario 1	VMT Change	2,441,489	2,441,489		
			CO2 Emissions (MMt)		0.007		
			N2O Emissions (MMt)		1.17E-08		
		1	CH4 Emissions (MMt)		1.25E-08		
			GHG EMISSIONS (MMICO2e)	0.007	0.007		
			Fuel Change		448,088		
		1	V/MT Change	1 407 407	1 407 407		
		Poonorio 2	CO2 Emissions (MMt)		0.005		
		ocenano 2	N2O Emissions (MMt)		7.14E-09		
		1	CH4 Emissions (MMt)		7.59E-09		
		1	GHG Emissions (MMtCO2e)	0.005	0.005		
			Fuel Change		735,470		
		1	V/MT Change	2,441,499	2,441,499		
		Poonorio 2	CO2 Emissions (MMt)		0.007		
		ocenano 3	N2O Emissions (MMt)		1.17E-08		
			CH4 Emissions (MMt)		1.25E-08		
			GHG Emissions (MMtCO2e)	0.007	0.007		

Step 7: Convert GHG Emissions for each Transit Mode to CO2e

1. In the "Bus" or "Commuter Rail" tab, the calculator will automatically convert the GHG emissions (CO₂, N₂O, and CH₄) for transit to CO₂ equivalents for each scenario.

Emiss	sions from Trans	sit Vehicles				
					Fuel Type	
				Diesel	Gasoline	CNG
			All Fuels	(gal)	(gal)	(therms)
		Fuel Change		735,470		
		VMT Change	2,441,489	2,441,489		
	Scenario 1	CO2 Emissions (MMt)		0 007		
		N2O Emissions (MMt)		1.17E-08		
		CH4 Emissions (MMt)		1.25E-08		
		GHG Emissions (MMtCO2e)	0.007	0.007		
		Fuel Change		448,088		
		VMT Change	1,487,487	1,487,487		
	Sconario 2	CO2 Emissions (MMt)		0.005		
	ocenano z	N2O Emissions (MMt)		7.14E-09		
	-	CH4 Emissions (MMt)		7.59E-09		
		GHG Emissions (MMtCO2e)	0.005	0.005		
		Fuel Change		735,470		
		VMT Change	2,441,489	2,441,489		
	Scenario 3	CO2 Emissions (MMt)		0.007		
	ocenano J	N2O Emissions (MMt)		1.17E-08		
	-	CH4 Emissions (MMt)		1.25E-08		
		GHG Emissions (MMtCO2e)	0.007	0.007		

Step 8: Calculate Net GHG Emissions for each Transit Mode

1. In the "Bus" or "Commuter Rail" Worksheet Tab, the calculator will automatically calculate the net GHG emissions for each scenario.

Not G	UC Emission Po	ductions	
Net	no Emission Ne	ductions	
-		Fuel Change	
		VMT Change	
		CO2 Emissions (MMt)	
	Scenario 1	N20 Emissions (MMt)	
		CH4 Emissions (MMt)	
		GHG Emissions (MMtCO2e)	-0.005
	Scenario 2	Fuel Change	
		VMT Change	
		CO2 Emissions (MMt)	
		N2O Emissions (MMt)	
		CH4 Emissions (MMt)	
		GHG Emissions (MMtCO2e)	0.008
		Fuel Change	
		VMT Change	
	Scenario 3	CO2 Emissions (MMt)	
	ocenano 3	N2O Emissions (MMt)	
		CH4 Emissions (MMt)	
		GHG Emissions (MMtCO2e)	-0.005

Step 9: Sum GHG Emissions for All Modes for the Agency

1. In the "Results Summary" Worksheet Tab, the calculator will automatically sum the GHG emissions for each mode.

Summary of Impacts							
	Change in A	uto Activity	Change in Tra	ansit Activity		Net C	nange
Sub-Strategy/Program	VMT (million)	GHGs (MMt)	VMT (million)	GHGs (MMt)	Au	rto Trips	GHGs (MMt)
Bus, Fixed Route							
Trend Scenario	-5.45	-0.002	2.44	0.007		-450,072	0.005
Evenly Distributed Scenario	-30.99	-0.012	1.49	0.005		-2,558,911	-0.008
Metro Areas Scenario	-5.45	-0.002	2.44	0.007		-450,072	0.005
Commuter Rail							
Trend Scenario							
Evenly Distributed Scenario							
Metro Areas Scenario							
Total Emission Reduction							
Trend Scenario	-5.45	-0.002	2.44	0.007		-450,072	0.005
Evenly Distributed Scenario	-30.99	-0.012	1.49	0.005		-2,558,911	-0.008
Metro Areas Scenario	-5.45	-0.002	2.44	0.007		-450,072	0.005

Also automatically summarized are the changes in auto and transit activity for each scenario and mode of transit so that the scenarios can be easily compared to one another.

Contact Information

• For Report Clarification:

Melanie Simmons, Ph.D. <u>msimmons@fsu.edu</u> (850) 644-3311

- For Calculation Information Harrison Higgins, Ph.D.
 <u>hhiggins@garnet.acns.fsu.edu</u> or
 <u>hhiggins@ucla.edu</u> (850) 933-6274
- For Contractual Information or Information Regarding Conserve by Transit 2 (CBT2)
 Amy Datz <u>amy.datz@dot.state.fl.us</u> (850) 414-4239